Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gen Physiol Biophys ; 31(2): 153-62, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22781818

RESUMO

The expression pattern of cardiac ion channels displays marked changes during ontogeny. This study was designed to follow the developmental changes in the expression of major ventricular and atrial ion channel proteins (including both pore forming and regulatory subunits) in canine cardiac tissues at the mRNA level using competitive reverse transcription polymerase chain reaction. Therefore, the corresponding mRNA levels were compared in myocardial tissues excised from embryonic (25-60 days of gestation) and adult (2-3 years old) canine hearts. Expression level of Kv4.3, Kv1.4, KChIP2, KvLQT1, and Cav3.2 mRNAs were higher in the adult than in the embryonic hearts, while expression of Nav1.5 and minK mRNAs were higher in the embryonic than in the adult myocardium. No change in Kir2.1, HERG, Kv1.5, and Cav1.2 mRNA was observed during ontogeny. Direction of the developmental change in the mRNA level, determined for any specific channel protein, was identical in the atrial and ventricular samples. The age-dependent increase observed in the expression of Kv4.3, Kv1.4, KChIP2, and KvLQT1 is congruent with the greater repolarization reserve of the adult myocardium, associated with higher densities of Ito and IKs. The results indicate that age-dependent changes in the expression pattern of many ion channels are similar in canine and healthy human myocardium, therefore, canine cardiac muscle can be considered as a good model of studying developmental changes in the human heart.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Coração/crescimento & desenvolvimento , Canais Iônicos/metabolismo , Miocárdio/metabolismo , RNA/metabolismo , Animais , Animais Recém-Nascidos , Cães , Coração/embriologia , Canais Iônicos/genética , Modelos Animais
2.
Naunyn Schmiedebergs Arch Pharmacol ; 383(2): 141-8, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21120453

RESUMO

Protein kinase C (PKC) inhibitors are useful tools for studying PKC-dependent regulation of ion channels. For this purpose, high PKC specificity is a basic requirement excluding any direct interaction between the PKC inhibitor and the ion channel. In the present study, the effects of two frequently applied PKC inhibitors, chelerythine and bisindolylmaleimide I, were studied on the rapid and slow components of the delayed rectifier K(+) current (I(Kr) and I(Ks)) in canine ventricular cardiomyocytes and on the human ether-à-go-go-related gene (hERG) channels expressed in human embryonic kidney (HEK) cells. The whole cell version of the patch clamp technique was used in all experiments. Chelerythrine and bisindolylmaleimide I (both 1 µM) suppressed I(Kr) in canine ventricular cells. This inhibition developed rapidly, suggesting a direct drug-channel interaction. In HEK cells heterologously expressing hERG channels, chelerythrine and bisindolylmaleimide I blocked hERG current in a concentration-dependent manner, having EC(50) values of 0.11 ± 0.01 and 0.76 ± 0.04 µM, respectively. Both chelerythrine and bisindolylmaleimide I strongly modified gating kinetics of hERG--voltage dependence of activation was shifted towards more negative voltages and activation was accelerated. Deactivation was slowed by bisindolylmaleimide I but not by chelerythrine. I(Ks) was not significantly altered by bisindolylmaleimide I and chelerythrine. No significant effect of 0.1 µM bisindolylmaleimide I or 0.1 µM PMA (PKC activator) was observed on I(Kr) arguing against significant contribution of PKC to regulation of I(Kr). It is concluded that neither chelerythrine nor bisindolylmaleimide I is suitable for selective PKC blockade due to their direct blocking actions on the hERG channel.


Assuntos
Benzofenantridinas/farmacologia , Canais de Potássio de Retificação Tardia/antagonistas & inibidores , Indóis/farmacologia , Maleimidas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Células Cultivadas , Cães , Relação Dose-Resposta a Droga , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go/antagonistas & inibidores , Células HEK293 , Humanos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/metabolismo , Fatores de Tempo , Transfecção
3.
Gen Physiol Biophys ; 29(3): 309-13, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20817956

RESUMO

Several cardioactive agents exhibit direct or reverse rate-dependent effects on action potential duration (APD) depending on the experimental conditions. Recently, a new theory has been proposed, suggesting that the reverse rate-dependent mode of drug-action may be a common property of canine, rabbit, guinea pig and human cardiac tissues, and this phenomenon is based on the dependence of drug-action on baseline APD. The aim of the present work was to examine the limitations of this hypothesis by studying the APD lengthening effect of K(+) channel blockers and the APD shortening effect of Ca(2+) channel blockers during the electrical restitution process of rat ventricular action potentials. Rat ventricular muscle was chosen because it has a set of ion currents markedly different from those of other species, its APD is shorter by one order of magnitude than that of the "plateau-forming" larger mammals, and most importantly, its APD increases at higher heart rates - opposite to many other species. The restitution of APD was studied as a function of the diastolic interval, a parameter indicating the proximity of action potentials. It was found that drug-induced APD changes in rat myocardium are proportional with the pre-drug value of APD but not with the diastolic interval, indicating that not the proximity of consecutive action potentials, but the baseline APD itself may determine the magnitude of drug-induced APD changes.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Coração/efeitos dos fármacos , Coração/fisiologia , 4-Aminopiridina/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Cães , Fenômenos Eletrofisiológicos , Feminino , Cobaias , Humanos , Técnicas In Vitro , Masculino , Modelos Cardiovasculares , Nifedipino/farmacologia , Bloqueadores dos Canais de Potássio/farmacologia , Coelhos , Ratos , Ratos Wistar , Especificidade da Espécie , Tetraetilamônio/farmacologia
4.
Naunyn Schmiedebergs Arch Pharmacol ; 382(3): 213-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20668839

RESUMO

In spite of its widespread clinical application, there is little information on the cellular cardiac effects of the dopamine receptor agonist ropinirole. In the present study, therefore, the concentration-dependent effects of ropinirole on action potential morphology and the underlying ion currents were studied in enzymatically dispersed canine ventricular cardiomyocytes using standard microelectrode, conventional whole-cell patch clamp, and action potential voltage clamp techniques. At concentrations > or = 1 microM, ropinirole increased action potential duration (APD(90)) and suppressed the rapid delayed rectifier K(+) current (I (Kr)) with an IC(50) value of 2.7 +/- 0.25 microM and Hill coefficient of 0.92 +/- 0.09. The block increased with increasing depolarizations to more positive voltages, but paradoxically, the activation of I (Kr) was accelerated by 3 muM ropinirole (time constant decreased from 34 +/- 4 to 14 +/- 1 ms). No significant changes in the fast and slow deactivation time constants were observed with ropinirole. At higher concentrations, ropinirole decreased the amplitude of early repolarization (at concentrations > or = 10 microM), reduced the maximum rate of depolarization and caused depression of the plateau (at concentrations > or = 30 microM), and shortened APD measured at 50% repolarization (at 300 microM) indicating a concentration-dependent inhibition of I (to), I (Na), and I (Ca). Suppression of I (Kr), I (to), and I (Ca) has been confirmed under conventional patch clamp and action potential voltage clamp conditions. I (Ks) and I (K1) were not influenced significantly by ropinirole at concentrations less than 300 microM. All these effects of ropinirole were fully reversible upon washout. The results indicate that ropinirole treatment may carry proarrhythmic risk for patients with inherited or acquired long QT syndrome due to inhibition of I (Kr)-especially in cases of accidental overdose or intoxication.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Agonistas de Dopamina/farmacologia , Indóis/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Cães , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/toxicidade , Relação Dose-Resposta a Droga , Feminino , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Indóis/administração & dosagem , Indóis/toxicidade , Concentração Inibidora 50 , Canais Iônicos/efeitos dos fármacos , Canais Iônicos/metabolismo , Masculino , Miócitos Cardíacos/metabolismo , Técnicas de Patch-Clamp
5.
Basic Res Cardiol ; 105(3): 315-23, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20127488

RESUMO

Class III antiarrhythmic agents exhibit reverse rate-dependent lengthening of the action potential duration (APD). In spite of the several theories developed so far to explain this reverse rate-dependency (RRD), its mechanism has not yet been clarified. The aim of the present work was to further elucidate the mechanisms responsible for RRD in mammalian ventricular myocardium. Action potentials were recorded using conventional sharp microelectrodes from human, canine, rabbit and guinea pig ventricular myocardium in a rate-dependent manner varying the cycle length (CL) between 0.3 and 5 s. Rate-dependent drug effects were studied using agents known to lengthen or shorten action potentials, and these drug-induced changes in APD were correlated with baseline APD values. Both drug-induced lengthening (by dofetilide, sotalol, E-4031, BaCl(2), veratrine, BAY K 8644) and shortening (by mexiletine, tetrodotoxin, lemakalim) of action potentials displayed RRD, i.e., changes in APD were greater at longer than at shorter CLs. In rabbit, where APD is a biphasic function of CL, the drug-induced APD changes were proportional to baseline APD values but not to CL. Similar results were obtained when repolarization was modified by injection of inward or outward current pulses in isolated canine cardiomyocytes. In each case the change in APD was proportional to baseline APD (i.e., that measured before the superfusion of drug or injection of current). Also, the net membrane current (I (net)), determined from the action potential waveform at the middle of the plateau, was inversely proportional to APD and consequently with to CL. The results indicate that RRD is a common characteristic of all the drugs tested regardless of the modified ion current species. Thus, drug-induced RRD can be considered as an intrinsic property of cardiac membranes based on the inverse relationship between I (net) and APD.


Assuntos
Potenciais de Ação/fisiologia , Frequência Cardíaca/fisiologia , Função Ventricular/fisiologia , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação/efeitos dos fármacos , Animais , Antiarrítmicos/farmacologia , Agonistas dos Canais de Cálcio/farmacologia , Cães , Cobaias , Frequência Cardíaca/efeitos dos fármacos , Humanos , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Modelos Animais , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/fisiologia , Técnicas de Patch-Clamp , Coelhos , Bloqueadores dos Canais de Sódio/farmacologia , Tetrodotoxina/farmacologia , Fatores de Tempo , Função Ventricular/efeitos dos fármacos
6.
Cardiovasc Res ; 84(2): 237-44, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19556280

RESUMO

AIMS: Class III antiarrhythmic agents exhibit reverse rate-dependent lengthening of the action potential duration (APD). In spite of the several theories developed so far to explain this reverse rate dependency (RRD), its mechanism has not yet been clarified. The aim of the present work was to further elucidate the mechanisms responsible for reverse rate-dependent drug effects. METHODS AND RESULTS: Action potentials were recorded from multicellular canine ventricular preparations and isolated cardiomyocytes, at cycle lengths (CLs) varying from 0.3 to 5 s, using conventional sharp microelectrodes. APD was either modified by applying inward and outward current pulses, or by superfusion of agents known to lengthen and shorten APD. Net membrane current (I(m)) was calculated from action potential waveforms. The hypothesis that RRD may be implicit in the relationship between I(m) and APD was tested by numerical modelling. Both drug-induced lengthening (by veratrine, BAY-K 8644, dofetilide, and BaCl(2)) and shortening (by lidocaine and nicorandil) of action potentials displayed RRD, i.e. changes in APD were greater at longer than at shorter CL. A similar dependency of effect on CL was found when repolarization was modified by injection of inward or outward current pulses. I(m) measured at various points during repolarization was inversely proportional to APD and to CL. Model simulations showed that RRD is expected as a consequence of the non-linearity of the relationship between I(m) and APD. CONCLUSION: RRD of APD modulation is shared, although with differences in magnitude, by interventions of very different nature. RRD can be interpreted as a consequence of the relationship between I(m) and APD and, as such, is expected in all species having positive APD-CL relationship. This implies that the development of agents prolonging APD with direct rate dependency, or even completely devoid of RRD, may be difficult to achieve.


Assuntos
Antiarrítmicos/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Ramos Subendocárdicos/efeitos dos fármacos , Éster Metílico do Ácido 3-Piridinacarboxílico, 1,4-Di-Hidro-2,6-Dimetil-5-Nitro-4-(2-(Trifluormetil)fenil)/farmacologia , Potenciais de Ação , Animais , Compostos de Bário/farmacologia , Estimulação Cardíaca Artificial , Cloretos/farmacologia , Simulação por Computador , Cães , Feminino , Ventrículos do Coração/citologia , Ventrículos do Coração/efeitos dos fármacos , Técnicas In Vitro , Masculino , Modelos Cardiovasculares , Miócitos Cardíacos/fisiologia , Dinâmica não Linear , Fenetilaminas/farmacologia , Ramos Subendocárdicos/fisiologia , Sulfonamidas/farmacologia , Fatores de Tempo , Veratrina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...